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Introduction

In this mathematical research project, | explored the
implications of introducing linear and logistically
varying time-dependent carrying capacities in the
logistic population growth model. Using Python
generated graphs, | observed various graphical
features such as stationary points, asymptotes and end
behavior. By formulating hypotheses, | proved these
observations using limits (L'Hopital's rule), Bernoulli's
differential equations and other analytical techniques.
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What?

A brief background on log
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Logistic growth model

-> Defining differential equation:

dN N
@ N E)

-> Basic features:

® |[nitial behavior similar to exponential growth

® Population keeps on increasing; however, growth rate
decreases (as opposed to exponential growth where
growth rate is always increasing)

® Approaches a final constant value, K, called the
CARRYING CAPACITY (maximum population size of a
particular species that a given ecosystem can sustain)
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Why?

Rationale behind my intention to explore time-dependent carrying capacity in
the logistic population growth model
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It only ALMOST works ...

Standard logistic best fit applied to US population
after Industrial Revolution

UK population over the past 200 years N

UK population (in millions)
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Why a varying carrying capacity (K)?

The standard logistic population growth model assumes constant K, which is a huge assumption since in
today’s world with climate change, increased research, and technological development, it is improbable
that our population will have a fixed maximum size.

Climate change Technological innovation
Climate change can make certain ‘ 2 Innovation like clean energy could
areas less habitable and potentially ‘ further enhance our ability to sustain a
limit the resources available for a growing population.
growing population. Why‘)

Thus, constant K would make little sense and rather varying K must be considered.
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Functions used to vary K with time

1) Linear variation i.e., 2) Logistic variation i.e.,

K(t) = at + B O o0 - 1) |1 -

K(t) - K,
Ky

A logistic time-dependent relation of the carrying capacity assists in more accurate representation

A time-dependent linear carrying capacity implies that the maximum sustainable size of a pop- .
P ying capacity fmp “ Pop of the following phenomena:

ulation in an environment changes linearly with time. There are a few reasons to study such a

dependence of the carrying capacity (K) in population growth models: 1. Introduction of technology: A logistic carrying capacity is an appropriate fit to model
1. Climate change and environmental factors: Altered climate patterns, like temperature the introduction of a new technology or innovation in a biological environment. This is be-
increases and extreme weather, stress ecosystems by disrupting resource availability. Pollution cause, although a new technology will increase efficiency and productivity of the population,
and deforestation further reduce resources, diminishing carrying capacity. A negative rate of these effects are more substantial in the long-term since it does not spread instantly. Ini-
change of linear carrying capacity allows for modelling the effect of diminishing carrying tially, the adoption rate tends to be sluggish, primarily because new technology must replace
capacity on the population growth. well-established counterparts. However, as time progresses, adoption rate often experiences
exponential growth until it encounters physical or other limitations that decelerate the pro-

2. Technological development: The relentless march of innovation, from the Industrial Rev- cess. [8]

olution to the Information Age, has consistently opened up new possibilities and improved

. living conditions. Today, geoengineering technologies such as stratospheric aerosol injection 2. Innovation waves: Furthermore, it’s important to recognize that technological innovations
offer opportunities to continue this trend and allow our planet to support more humans on it. rarely exhibit a uniform temporal distribution. Instead, they tend to emerge in distinct
Hence, technological development would increase the carrying capacity of the human popu- “waves,” [8} a pattern evident thl‘OllghOllt hiStOI‘y, spanning from the Agricultural Revolution
lation, which can be modelled using a positive rate of change of the linear carrying capacity. and the Scientific Revolution to the Industrial Revolution and, more recently, the Information

Revolution. Such phenomenons can be effectively modeled using a population growth model
with a logistic carrying capacity representing “waves of development”, as we later see in Figure
3 (blue curve).
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How?

What kind of methods and techniques | used to study these models?
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Three major techniques

Bernouilli differential Computational plot
equations generation (using Python)
All the models were defined Since solutions obtained were
using differential equations not closed-form, Python plot
which took this specific form methods were used to create
graphs

Mathematical analysis

Limits, differential, L'HOpital's
rule, and other tools were
used to analyze the graphs

1
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Important method used (similar to actual research)

A very important feature of this work:

1. Graphs were plotted using Python

2. Graphical features that were observed were used to formulate
conjectures

3. These conjectures were then proven rigorously in full generality.
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So?

A summary of important results obtained and their implications




Major results:

» Different models exhibit different features, such as points of
maxima, asymptotic end behavior, and more

» Growth rate is the major factor which affects the behavior of the /
newly defined population growth models with varying carrying
capacities

» Results observed for specific parameters in a model can be fully

generalized and proven using analytical tools such as derivatives,
limits, L'Hopital's rule, etc.
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Model 1 - Theorems

1. For a > 0, as time increases without bound, N(t) approaches K (t).

2. For a < 0, K(t) intersects N(t) at the point of maximum of N (¢).




A snippet
of one of
the
proofs

Theorem 1.

In a logistic growth model wnith a time-dependent knear corrying capacity, when the raie
of change of carrying capacity is positive te., o = 0, as time ¢ increases without bound,
Nt} approaches K(t).

Proof

First, let us represent the statement in formal limit notation:

N(t)

f—oc Il’(r) -

This is justified since when two functions would approach each other, their ratio should

tend to 1.

Next, knowing that lim,_ K{#) = lm;_, {0t + 4) 5 0 since o & 0, we can use the
. o o Nif)
quotient rule of limits [3] to write lim_. ﬁ as follows:

N(t)  lme,. N(t)

SRR Tmom K (13)

Let us solve the limit in the numerator, limy_, . N{#), uwsing the expression derived for

N{t) in equation on page |9

) e
lim N{t) = lim ————,
e kil e
J|'l
=—-lim —.
T [ dt

Now, knowing that + = 0 from the assumption made in section [21] on page [3] when

t— oo & = oo
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K(t) =K +

Ky

1 4+ e—aclt—to)

)

N(t) =

e'rt

K +

14e—clt—tg)

dt

Growth model with logistically varying carrying capacity for different values of a,

Model 2 - Logistically varying carrying capacity
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Model 2 - Theorems

1. For a. < 0, K(t) intersects N(t) at the point of maximum of N(¢).

. . Ky .
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A snippet
of one of
the
proofs

Theorem 3.

In a logistic growth model with a time-dependent logistic carrying capacity, when the

intrinsic growth rate of the carrying capacity is negative ve., o, < 0, K(t) intersects

Ni{t) at the point of mazimum af N(t).

Proof

The above theorem can be proven through the following steps:

(a)

(b)

Let us assume that the point of intersection of K'(t) and N () is (t;, N(t;)). Toshow
that this is a local maximum of Nit), we need to first prove that it is a stationary
point i.e., N'(t;) = 0 and then emploving the second derivative test, we must show
that N7(t;) < 0.

y P N
Let us first prove N'(t;) = 0.
At t = t;, K(t) and N{t) mtersect each other and hence

Kit;) = Ki + +._.‘ N(t;). Now we can find N'(t;) by substituting t = ¢;

in the differential equation which defines this model ie., equation on pitg{r

o AN (t; - Nit;
N'{t;) = % =rN(i;) | 1- “%);,
i 14 el =t b
Since K; + ﬁ = Nit;),
iy ry Nit;
N “j) =rN UJ’) {1 - .\':ErJ,;:| ’
VL
— N ()1 - 1),
=1

Hence, we have shown that N'(#;) = 0.

d dN d* N d . N
R E p——
dt* dt di* dt K + ]_rﬁ

=r‘[—E .\'\f—ﬁ%..
dit KaJrr.[.‘,’!rWr !

dN d N
M A
dt t P+ ﬁ

T4e ™

- Iy d(N?) 2| d g K
AN [Ai + T"(—m] T - N [m("‘i + r"‘_fn):|

- 2
- K
[ + o]

. K AN i-_ - K
AN [!\.g + T;] 2N - N2 [%{A, + H—f—)]

rn . K 2
[Aa + e m.}

Now, remembering K, Ky, ty and a, are constants, we can evaluate :—((A',- +

IS

Tfﬁ) as follows:

Ky . ~1

d oo _ — ot —to) y
W{Ai Iy r:*"rEHn}) =& (14 ety ¢ (o).

Ky e (t—to}
[1 + (:—n-.ff—f(:})!'

=,

Substituting this value in the expression for dn.—y

dN [1'; + —W] WG - N { alki + —MW)]
dt [A + H,.: qj.}

¢ AN o K eacli-to)
AN B ["“ + m fu‘] AN N {"" (T4e et ‘0:‘})]

. 2
dt {1’\. n _ﬁ}
] ax L Ky eocli-to)
A 2N . PN 0 e
L — v

- 7
14e—aclt=tg] [1’& -+ —”r,‘;‘n,}
Thus, we have obtained a general expression for the second derivative of N{t),

72 Ky emoclt-ty)
2r] '\'( )\"{ ) + A U) e (1ol "f.‘}’.

N”(l) = Y‘N’(l) - = 7 7
6+ T+e—aclt—tg] [1\ + —,“;{U.]




US population (in 10 millions)

Aligning new model with population data _

Growth model with logistic carrying capacity compared to US population
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Conclusion and further research

Overall, the new model provides a deeper and more realistic understanding of human population
growth which is also in sync with how technology and climate change affect our species’ size.

Further research:

]_ Factoring in fertility and mortality rates and other variables
’) Investigating a population-dependent carrying capacity with a variable growth
rate

Exploring models with different mathematical functions for carrying capacity,
such as sinusoidal, logarithmic, hyperbolic, etc.




Thanks!

Keep growing!
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https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
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